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Self Introduction

 Vertical Lift Research Center of Excellence (VLRCOE)
project collaboration with Penn State

« Task: Fundamental Aeroacoustics of Lift-Offset Coaxial
Helicopter Rotors
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Se If I ntrOd u Cti O n UNIVERSITY OF CALIFORNIA

* Aerodynamics and aeroacoustics of multi-rotor
Urban Air Mobility (UAM) vehicles

NASA’s One-Passenger Quadrotor NASA’s Six-Passenger Quadrotor

NASA's Six-Passenger Side-by-Side Rotor

Courtesy of Dr. Johnson and Chris Silva from Rotorcraft Aeromechanics, NASA Ames
[ |
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UNIVERSITY OF CALIFORNIA

Part 1: Lift Offset Coaxial Rotor

_——
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. - UCDAVIS
I ntrOd U Ctl on: M Otlvatl on UNIVERSITY OF CALIFORNIA

A lift-offset coaxial rotor is
considered for the next-
generation rotorcraft

» Adopted the Advancing Blade
Concept (ABC) from the Sikorsky
XH-59A

 Potential noise issues due to
mutual interactions between the
upper and lower rotors

- Fundamental understanding of | A
mterac_tlon_al a?r.odynamlcs and Sikorsky & Boeing SB>1 Defiant
aCOUStICS IS Crltlcal Ref: Sikorsky photo gallery & archives
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IntrOdUCtion: Lift Offset UNIVERSITY OF CALIFORNIA

+ Lift-offset (LO): the shift of integrated lift toward the
advancing side of the rotor disk

« Each rotor carries a rolling moment of equal magnitude
and opposite direction

 Mathematical expression:

AM
LO =
T-R
T Upper Rotor

Advancing side of
the upper rotor

f\ | ?T Retreating side of
b

7 \ -
f the upper rotor

Lower Rotor

[
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IntrOduction: Literature Review UNIVERSITY OF CALIFORNIA

- Parallel rotor-to-rotor blade vortex interaction (BVI) noise of
a lift-offset rotor at low speed [Kim, H. W., et al., 641" AHS
Annual Forum, 2008]

« BVI-like pressure pulses being identified for a lift-offset
coaxial rotor [Walsh, G., et al., 72"d AHS Annual Forum, 2016]

Parallel BVI

stic Pressure (P2
N DO

Fundamental understanding of coaxial rotorcraft

aerodynamically induced noise is still limited. 032
|
Ref: Kim, H. W.,, et al., 64th AHS Annual Ref: Walsh, G., et al., 724 AHS Annual
Forum, 2008 Forum, 2016

_——
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IntrOd UCtion : ResearCh UNIVERSITY OF CALIFORNIA
Objectives

* Predict the acoustics of a lift-offset coaxial rotor in
high-speed forward flight based a high-fidelity
CFD/CSD loose coupling approach

* |ldentify the noise sources of a lift-offset coaxial rotor

« Perform parametric studies: flight speed, lift-offset
value, rotor-to-rotor separation distance, and vehicle
pitch attitude

« Correlate rotor acoustics with vehicle performance for
the lift-offset coaxial rotor

 Investigate the interactional acoustics of a full-
configuration coaxial model

_——
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MethOds: Aircraft MOdeI L\A'I\'IfR;\'.“ll\' OF CALIFORNIA
 Aircrat model: the Sikorsky XH-59A

Blades Per Rotor 3
Rotor Radius (ft) 18 ft (5.5 m)
Nominal Rotor Speed 345 RPM ' ikorky XH-59A

Nominal Tip Speed 650 ft/sec (198 m/s)

Number of Blades
Rotor Radius (ft) 3.6ft(1.1m)

\
Propeller Properties <@~ \
ﬁ

Nominal Rotor Speed 2068.4 RPM Full Configuration
Nominal Tip Speed 775 ft/sec (236.1 m/s) CFD Model
|
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. UCDAVIS
M eth Ods - Al rc raft M od e I UNIVERSITY OF CALIFORNIA

* The four CFD models:

\“—,‘ P

Isolated coaxial rotor (without the hub) Isolated coaxial rotor (with the hub)

Fuselage case Full configuration case

E—— D
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Methods: CFD Software
. Software: HPCMP CREATE™-AV Helios

UCDAVIS

UNIVERSITY OF CALIFORNIA

Dual Mesh Paradigm

Cartesian off-body - SAMCart

Near-body — mStrand, Overflow, FUN3D, |.

Adaptive Mesh Refinement

‘.'11“ I 4

.

To resolve wake

Moving Body Overset

Rotor-Fuselage and Multi-rotor
moving mesh support

CFD/CSD Coupling

———
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4

RCAS and CAMRAD Structural
Dynamics and Trim coupling

Advanced Software Infrastructure

] (o] []

- Aeman s
Cam—

Python-based infrastructure readily
supports addition of new software

High Performance Computing

Runs on HPC hardware with
focus on parallel scalability

Sitaraman et al., “Progress in Strand/Cartesian Overset CFD Simulations Using CREATE™ —AV Helios”, NASA Ames Seminar, May 25, 2017

12/10/20
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Methods: CFD Mesh

Near-Body Grids
(Chimera Grid Tools)

Rotor blade Propeller blade

5M grids/blade 1.9M grid pts/blade
Initial wall spacing: 5x10-¢

ft for a dimensionless wall
distancey +=1.0

Outer boundary
spacing: 10% Cy,

Rotor hub (1.8M) Fuselage (3.8M)

E——
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Off-Body Grids
(SAMCart)

d Lebed ettt otedutetetedetotet bt etet el 4 deded Leded. J il bdedoded }
} I RHIRTTR AR OORARIR AR R RIE R "1‘5::,511,!,::5,::: }:::!:::!:::: i:::!:::!:::i::ii f::'!::f':::'f:::!::'!;::f':::'f:: !::ﬂ::if:f:::}: 15
.| Off-Body Cartesian Mesh 3
e Near-Body Mesh
‘1| Freestream
Y w1
88! i S B S s
HH ::::!:t::::::T:]::::I:T:i::::::i::::::[:f::::i:i::::::i::::::I:f::::::[::::::::

* Far-field dimension: 20 rotor radii

* 8 levels of Adaptive Mesh Refinement
w/ Level-1 spacing = 10% Cy;,

* Total: 102 M grid pts (1t time step)
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MethOds: CFD Setup UNIVERSITY OF CALIFORNIA

« Summary (Helios Simulations):

Input Parameters Near-Body Grid Off-Body Grid
CFD solver OVERFLOW SAMCART
Spatial scheme 5th order 5th order
Temporal scheme 2nd order 2nd order
Time step size 0.25°
Turbulence Model SA-DES

Frequency of blade

0.50° (every two time steps
surface output (every ps)

« CFD/CSD loose coupling at every half rotor rev/180°
after the first rotor rev

 Full configuration case: every rotor rev/360°

[
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Methods: CFD/CSD Setup

« CFD/CSD loose coupling between OVERFLOW and
RCAS

* The CFD/CSD flow chart:

ROTORCRAFT COMPREHENSIVE CODE
trim solution

iteration = 0: initialize, F/M, = F/Mg"

iteration > 0: F/M, = F/M["" + (F/MZ° —F/M}%)

v

quarter chord motions

U

CFD iteration

v

CFD Aero: NF,CF,PM

1y

Convergence?
NF,PM,controls

no

DONE Ref: Potsdam et al., Journal of Aircraft, 2006

_———
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Methods: Acoustics Prediction

* PSU-WOPWOP

UNIVERSITY OF CALIFORNIA

 Numerically solves Farassat’s Formulation 1A of the Ffowcs
Williams and Hawkings (FW-H) equation

 Impermeable surface strategy is used (the quadrupole source

term is neglected)

p'xt)=p (X)) +p' (X 1)

1. The Doppler amplification factor
1/(1 — M,) in each term

2. Change of blade surface loading
with respect to change of acoustic
source emission time or retarded

4mp’ (X, t) = j P "iv" ;Iv’;)] ds +
f=0 - M| ret
oYn TM,.-I-C(M,.—MZ))] ds
f=0 r1— M. |? ret
- L,
4mtp’, (X, t) = - Mr|2]ret ds +

lr _ lM ]
dS +
jsz [r2|1 _ Mrlz

ret

time I, 1 L.(rM, + c(M, — M%)
C f=0 T | 1 - Mrl ret
_——
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Resurts: Power Validation UNIVERSITY OF CALIFORNIA

« Simulated at 100, 150, 200 knots in forward flight (3,000
ft altitude) with zero vehicle pitch attitude

* Vehicle power validation (assuming LO = 0.2)

3500 ‘
-Flight test data
3000 - ¢ 100 knots (Error = 6.7%)
O 150 knots (Error = 0.7%)
A 200 knots (Error = 3.5%)
. 2500 -
o
<
= 2000
°
o
1500 -
1000 -
500 ‘ ‘ ‘
50 100 150 200 250

Forward Flight Speed (Knots)

[
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Results: Lift-Offset Coaxial Rotor . _CDAVIS

UNIVERSITY OF CALIFORNIA

« Aerodynamic interactions at 150 knots (LO = 0.2)

* Iso-surface of g-criterion colored by vorticity
maghnitude

2. Hub-Wake
Interaction

1. Self-BVI 3. Blade-Crossover

Interaction

Zoomed-In View
from the Top

5. Reversed-flow-edge vortex 6. Rotor-to-rotor BVI

E—— B
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Results: Lift-Offset Coaxial Rotor

- Azimuthal derivative of sectional normal force (1, for

UNIVERSITY OF CALIFORNIA

the three speed cases (zero vehicle pitch attitude &

LO = 0.2)

Self-BVIs
90° 00° ¥ 1 90°
135° 45° 135° 45° 135° /45°
:zf;r 180° v 0° 180° v ~0° 180° vV G I
225° \31 5° 225° \ 315 225° \ 315°
Voo 5 The strength of noise sources increases with
. . . | o]
increasing flight speed
225° 315" 225° 315" 225° 315°
LOWEr 4g0° leY 0° 180° leY 0° 180° A
\>\'
135° 45° 135° v 45° 135° | 45°
90° 90° 90°
100 Knots 150 Knots 200 Knots
[
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Results: Lift-Offset Coaxial Rotof" ™ o curowis

“DAVIS

Loading Noise Acoustic Pressure (p'))
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Results: Lift-Offset Coaxial Rotor - & 2AVIS

« Single rotor (isolated upper rotor) vs. upper of the coaxial rotor at
100 knots

Single Rotor Coaxial Rotor
90° 90°
135° “ 45° 135° o a°
12
Due to
Upper N/(deg-m) Self-BVI Events
Rgfor 180° v 0° 180° v 0° 800
8
©
225°  / \ ° 225° 315° %
v 270° / 270° 34
- w
— Absence of blade- %0 8
270° 270° P
crossover events 0
225° 315° 225° 315° E ; 1
< Vi 1! !
"~ H ] |/
Lower ’ -1400 ] \ H
Rotor 180° N 0° 180° N 0° n N Y y
Due to Blade-Crossover Events  —isolated upper rotor
\ -=coaxial upper rotor
) . ) ) ) ) -8
135 L. 45 135 45 0 002 004 006 008 01 012 014 0.16
90° 90° t [s], Mic. #1
Coaxial Rotor Isolated Rotor
E—— T EEEE——
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Results: Lift-Offset Coaxial Rotor """ "

» Effect of flight speed
« Comparison of mid-frequency SPL

120

r-100 kr;ots
150 knots Starboard

110 200 knots | 5R °
g
~— ®
=1 100 8
wn
>
c 90 ol
-
o
o
& 90 2 4
O % ®
= 3

70 - Py
Port
60 —
1 2 3 4 5 6 7 8
Microphone Number
[ |
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Results: Lift-Offset Coaxial Rotor

UNIVERSITY OF CALIFORNIA

- Azimuthal derivative of sectional normal force (l,) at
150 knots (three vehicle pitch attitude (a) cases)

Self-BVIs Parallel Rotor-

90° 90° 90° to-Rotor BVIs
(o] o (o] /1 (o] o] /O
135 45 135 45 135 ) 45
N/(m-d
:zf :rr 180° \® 4 - 0° 180° v 0 180° | | (m-aeo
225°  / \ 315° 225° \ 315° 225° \ 315°
\ 270° ) 270° 270°
. . - +-300
a = —5° shows impulsive parallel rotor-to-rotor BVIs which can
lead to highly impulsive noise 0 I
-1400
;Z:ﬁr 180° [ 180° n o 180° n ~0°
R =
135° \\45° 135° 45°\ 135° 45°
Self-BVIs / *‘o\ . N ak .
(Overlapped with 90 Parallel Rotor- 90 Hu 'Wﬁ e 20
the Parallel Rotor- @ =-5°  to-Rotor BVIs a=0° Interaction a =5°

to-Rotor BVI)
|
12/10/20
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UCDAVIS

ReSUItS: Lift-Offset COaXiaI ROtOI’ UNIVERSITY OF CALIFORNIA

 Parallel rotor-to-rotor BVl at « = —5° (150
knots)

‘ Upper Rotor Blade ‘

Lower Rotor

270°

Starboard /(. | ANl N 225° 315"

N
LR = 180° n 0

F// N

| ) ‘W"t/ 1350/\ \45°
N 90°

‘ Lower Rotor Blade ‘ Rotor-to-Rotor BVI (Parallel &
Above the Surface)

E——
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RESUltS: Lift-Offset CoaXiaI ROtorL:/l\lR\ll\ OF CALIFORNIA

Loading Noise Acoustic Pressure (p';) at 150 knots

N
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N
E=Y
N
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o o
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fa f\m—}% ﬂ} } s OWT‘ !WM -
Q Q
5 . Z-12 /F\</-’ 212
° = —5°sh ignificant i Isi k th t 5
3| = SNOWS signiticant impuisive pressure peaks on e por 0.15
® . . Ti
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[
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ReSUItS: Lift-Offset Coaxial ROtOF ONIVERSITY 014(;.\1,H-'0|<A§1.\

« A comparison of mid-frequency sound pressure level at

150 knots

« Computed between the 10t and 50t blade harmonics

110

-a=O° H
M, =-5°

105

Mid-Frequency SPL (dB)
(o] (0] ({e] © 8
o (3] o (3] o

~
($)]

~
o

4 5 6 7 8
Microphone Number
N
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ReSUItS: Lift-Offset Coaxial ROtOF ONIVERSITY 014(;.\1,H-'0|<A§1.\

« A comparison of mid-frequency sound pressure level at

Starboard
5R e

200 knots
« Computed between the 10t and 50t blade harmonics
120 |
M, =-5°
B, =0°
=110 Mo =5°)
Z
—l
o
® 100
o
o
=
g 9
LL
g
= 80

70

3 4 5 6 7 8
Microphone Number
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Results: Lift-Offset Coaxial Rotor """ <o

« Power Performance

* At high speed, a = 5° shows better power and
acoustic performance

 a = 5% shows the lowest mid-frequency SPL at 200

1600 w w : 4000 ‘
Il Total Rotor Power Il Total Rotor Power

1400 Bl Auxiliary Propulsion Power 3500 - Bl Auxiliary Propulsion Power
Il Total Power Il Total Power

1200 - 3000 -
1000 22500
£ =
o 800" o 2000
3 3
o 600+ a 1500
400 1000 -
200 - 500 -
0 0
a=-5° a=0° a=5° a=-5° a=0° a=5°

150 Knots 200 Knots
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ReSUItS: Lift-Offset Coaxial ROtOI’ UNIVERSITY OF CALIFORNIA

» Effect of the lift offset value (LO) at 100 knots
« Comparison of mid-frequency SPL

110 - » :
ElLift Offset = 0.0
EELift Offset = 0.1 Starboard
[CJLift Offset = 0.2 5R o
~100
=
~— ®
_ 8
o
» 90 R p
5 “2;;::_ 4,-{,'33::'"
& el T -
g‘ 80 » ',;:211"" N\
o
L 2 4
o ® ®
= 70 3
®
Port
60
1 2 3 4 5 6 7 8
Microphone Number
| 1
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Results: Lift-Offset Coaxial Rotor """ <o

» Effect of rotor-to-rotor separation distance at

150 knots

« Comparison of mid-frequency SPL

110

Mid-Frequency SPL (dB)
(o 0] (] E;
o o o

D
o

_—
12/10/20

~J
o

3

[J0.76 m (original configuration)
m1.14 m (50% increase)

—_—

—

4 5 6 7 8
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UCDAVIS

ReSUItS: Lift-Offset COaXiaI ROtOI’ UNIVERSITY OF CALIFORNIA

 Hemispherical observer-grid simulation (10R)
« Computed rotor noise only

Mid-Frequency SPL (dB)

» 106.0
"

Vw & 80.0
-----')»
[ [
Isolated Rotor Case Fuselage Case Full Config Case
Min: 79.3dB Min: 80.6 dB Min: 79.7 dB
Max: 104.1 dB Max: 105.6 dB Max: 106.6 dB
—

12/10/20
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Summary of Results: Lift-Offset .o coonns
Coaxial Rotor

 BVI and blade-crossover events are the most dominant
aerodynamic interactions of a lift-offset coaxial rotor.

* The lift-offset coaxial rotor showed higher mid-
frequency SPL at a negative pitch attitude, higher
speed, higher LO, and lower rotor separation distance.

 Significant improvement in rotor acoustics and vehicle
power performance at a positive pitch attitude.

 Full-configuration model showed higher noise than that
of the isolated coaxial rotor model.

_——
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UNIVERSITY OF CALIFORNIA

Part 2: Urban Air Mobility
Aircraft

_——
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. : UCDAVIS
I ntrOd u Ctl on.: UAM ve h 1C I @S  UNIVERSITY OF CALIFORNIA

I : = SR T | - (R eroe B
* Hybrid or fully-electric vertical B SN tes . RHE S

take-off and landing (VTOL)
aircraft become increasingly
popular

* The concept of Urban Air Ref: DaSiI, J.L, "raffi Conistentl ad in
M0b|||ty (UAM) Bay Area”, The Pioneer, Oct. 2"9, 2017

* Provide green, efficient, safe, and
affordable urban air transportation

 Alleviate traffic congestion

* Interconnect urban and suburban
areas

 UAM aircraft designs feature
multi-rotors and fixed wings

Hyundai’s Full-Scale Air Taxi Concept

Ref: https://evtol.news/2020/01/06/uber-and-
hyundai-motor-announce-partnership/

e
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Introduction: UAM vehicles “

* Both aerodynamics and acoustics of multi-rotor
configurations could be significant different from that
of conventional helicopters

* Noise is a potential barrier to public acceptance

* Uber’s guidelines:

« 15 dB lower than similar-sized helicopter noise (Ref: Hayes and
Stevenson, UAS Traffic Management News, 2019)

* Less than 67 dB (A-weighted) from the ground level at 250 ft
(76 m) (Ref: Holden and Goel, Uber Elevate, 2016)

NASA’s Quadrotor Configuration NASA’s Side-by-Side Rotor Configuration

Courtesy of Dr. Johnson and Chris Silva from Rotorcraft Aeromechanics, NASA Ames
| .
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- UCDAVIS
Introduction

* Ventura Diaz et al. (2019 VFS Forum) showed
rotor-to-rotor BVI could be a potential noise
source of a side-by-side rotor

« Sagaga and Lee (2020 AIAA Aviation Forum)
demonstrated that hover performance of a side-
by-side rotor could be reduced with increasing
rotor overlap

 Liand Lee (2020 VFS SJ Forum) calculated

. . Ref: Ventura Diaz et al.
broadband noise of a quadrotor UAM vehicle (2019 VES Forum)

design based on UCD QuietFly and
demonstrated its importance at high frequency

« Thai et al. (2020 VFS SJ Forum) demonstrated a

multi-rotor trim loose coupling approach for AN
LLAM i f civn 1ot e |

Very limited research and understanding of UAM aircraft
noise and its impact on community.

AT I Ref: Sagaga and Lee (2020
Ref: Thai (2020 VFS SJ Forum) e AIAA Aviation Forum)

[ L eesesm——
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IntrOd UCtion : ResearCh UNIVERSITY OF CALIFORNIA
Objectives

- Simulate UAM aircraft acoustics based on a high-
fidelity CFD approach with prescribed rotor motions.

* ldentify potential acoustic sources of the selected
multi-rotor UAM aircraft models.

* Perform parametric studies (e.g., rotor-to-rotor overlap).

« Compare the UAM aircraft noise with conventional
helicopter noise and various background noise levels
(e.g., freeway noise).

_——
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MethOds: Aircraft MOdels UNIVERSITY OF CALIFORNIA
 NASA’s 1-passenger quadrotor

 NASA’s 6-passenger quadrotor

 NASA'’s 6-passenger side-by-side rotor (0%, 5%, 15%,
and 25% overlap)

1-Passenger 6-Passenger 6-Passenger Side-
Properties .
Quadrotor Quadrotor by-Side Rotor
2

Number of Rotors

Rotor Radius (ft) 6.5 13.1 10.5
Nominal RPM 662 400 499
Payload (Ib) 220 1,200 1,200

_——
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MethOds: CFD MeSh UNIVERSITY OF CALIFORNIA
* Near-body:

* Overset structured mesh generated using Chimera Grid Tools

Side-by-Side 3.0M
1-Pass Quad 239 171 65 3.6 M
6-Pass Quad 239 171 65 3.6 M

« Off-body:

« 8 levels adaptive mesh refinement (AMR) with the finest wake-
grid spacing equal to 10% Cy;,

- | Finest Wake-Grid
.| Spacing (Level 1)

e

Blade Root Blade Tip H . i Near-Body Grids

[
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Methods: CFD Setup

« Summary (Helios simulations):

Input Parameters Near-Body Grid Off-Body Grid
CFD solver OVERFLOW SAMCART
Spatial scheme 5th order 5th order
Temporal scheme 2nd order 2nd order
Time step size 0.25°
Turbulence Model SA-DES

Frequency of blade

0.50° (every two time steps
surface output (every ps)

 UAM vehicle trim: prescribed motion
« Simulations converged after 5 rotor revolutions

[
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Results: Quadrotors

« Performed forward flight simulations at 70 knots and an
altitude of 5,000 ft

* Iso-surface of g-criterion colored by vorticity magnitude 3, Fuselage
for the one-passenger case Wake

. . O
Vorticity Magnitude Tt (RN
-005 { e " |
-

0.0
1. Self-BVI

Vorticity Magnitude
» 0.5

,,,,,,

2. Hub Wake 4. Root-Induced Vortex
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T -80
W= -120
]
S 120
T 80
E 40
N
> 0
> -40
T -80
w--120
O
|

Results: Quadrotors

 Comparison azimuthal derivative of sectional normal
force at 75% span

12/10/20

40"

UNIVERSITY OF CALIFORNIA

Rotor 1 o) Rotor 3
o 120
; Self-BVIs T g0 Self-BVIs
:; ~\-E— 40 | .‘ /. |
- “r pa 0 ~= e d NG _ \7\7--*-\
"-.i s -40 : f
v E -80 L
‘ ‘ ‘ ‘ ‘ ‘ ‘ w--120 | | | | | | |
45 90 135 180 225 270 315 360 © 0 45 90 135 180 225 270 315 360
¥ (deg) ¥ (deg)
Rotor 2 S Rotor 4
| | | o 120
© 80" —1 Passenger (FuII),
€ 40 ---6-Passenger
2 0} VAl
e:‘ 40} \ ,
E -80 '
©.120 | | | | | | |
45 90 135 180 225 270 315 360 'G 0 45 90 135 180 225 270 315 360
¥ (deg) ¥ (deg)
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Results: Quadrotors

« Comparison of overall sound pressure level (OASPL)

95
- Passenger

-6 Passenger

*6

111

Mlcrophone Number

90 -

]
(5]
T

OASPL (dB)
@
=)

75+F

70

[ e
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 Decomposition of the vehicle noise for the one-
passenger full configuration case.

85 , . - . . . . .
Il Full Configuration \
Il Rotors
Il Main Fuselage
80 [ Rotor Hubs -
B Supporting Arms
0z
T 75
-
(o
=
60 1 2 ®2 o4
Mlcrophone Number o>
[ I
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———

. Cor_nparison egainst similar-sized conventional 2ot 4
helicopter noise e
80 \ \ \ \ \ \ \ \ ] ] \-B\ "‘430
_, | Mic: 500 ft below the vehicle BB 1-Passenger
Hl6-Passenger

(o2
O

o1
O

1|I ‘Il ||| |I‘ ||| |I‘ |I‘ |I‘ ||| ||I ||| |II |I| ..| ‘ |

A-Weighted SPL (dB)
N
o

30

20 1 Passenger 6- Passenger Bell430 M
A-weighted

101 SAGPL (dB) 56.6 63.8 74.7

o

n o ©o O 1n O O O o

o o
©o N O O N - O o oo o o
™ ™ v N AN OO < 1O O oo o

1250
1600

o
o
o
N

2500
3150
4000
5000

One-Third Octave Center Frequency (Hz)
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« Comparison against the background noise data
measured by Begault (NASA Ames) in the Bay Area, CA

80

~J
o

(*2]
o

a1
o
H

One Third Octave SPL [dB]
Y
o

30 —Rural
—Park AN, o

201 Community PP\
—Freeway AN

107 —250 ft (76 m) A )
---500 ft (152 m) | | TG

?02 - -1,000 ft (305 m) 103 Ref: Begult, Acoustics and Urban Air
""" 1,500 ft (457m) Mobility Technical Working Group
Frequency [Hz] Meeting, Hampton, VA, 2019
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Summary of Results: Quadrotors

 BVI is the most dominant noise source of the selected
quadrotor UAM aircratft.

* The six-passenger quadrotor with higher payload
shows higher overall sound pressure level than the
one-passenger quadrotor

* The six-passenger quadrotor is only 10 dB quieter than
the conventional helicopter Bell 430. A goal of 15 dB
quieter than similar-sized conventional helicopter noise
is still challenging.

* The six-passenger quadrotor noise could not be
completely masked by the highway noise level even at
altitude of 1,000 ft. Noise in low-altitude operations
could be a potential concern.
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« Simulations performed at 115 knots and an altitude of 5,000 ft

A total of four overlap cases are considered: 0%, 5%, 15%, and 25%

Vorticity Magnitude
» 1.0

2ty +Z 4y
*"?-' +X
0% Overlap Rotor-to-
Top
View l ). Rotor BVI
+Z  +y +z 4y
X +x?-'
15% Overlap
I T
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Results: Side-by-Side Rotor “ o

 Comparison of the azimuthal derivative of sectional
normal force ~ ‘I’ ises

135° 225° I

' 60 60

/ | / SelfBVIs . / | o o

135

g
Self BVIs — 4 . VT o Y L A B
45° “ 315 45° ‘/ 315°
Left ° 20 Separated Flow /: ‘ 120
Interaction
Rotor 0% Overlap 5% Overlap
(CW) 180° N/(deg-m) 180° N/(deg-m)
120 120
135° 225° I Roto r_to_ 135° 225° I
Rotor BVI =
90° ’vzk\go 90° | s 270° | |0
e T aN ™
W . « Rotor-to- / : 60
45° ‘v 315° I Rotor BVI 45° " ‘ 315° I
0° / -120 0° l -120
15% Overlap 25% Overlap
| .
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« Acoustics simulation performed on a hemispherical grid with a

radius =10R _ L oo w0l - oo
207 ¢ 95 207 4 95
-10 / 101/
— 90 — 90
E of E of
* K 85 * 85
10+ \ 10| \\\\\
20 80 20! . \ 80
Comparison ol 1B o & > 1,
30 -20 -10 0 10 20 30 30 -20 -10 0 10 20 30
Of OASPL y (m) y (m)
from the To
P 0% Overlap 5% Overlap
VieW | ‘ ‘ ‘ ‘ | dB1oo : : : : ‘ | dE’100
30 /@ ] -30 ¢ \@/— ]
20 47 : 95 -20 ¢ 95
104 10|
- 90 —_ , 20
E of E ol
x 85 * 85
10 ' 10 ¢
20 g 20 N LU
30 \__// ;- 0. See> |1,
30 20 -10 0 10 20 30 30 -20 -10 0 10 20 30
y (m) y (m)
15% Overlap 25% Overlap
E—— S
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Results: Side-by-Side Rotor

* Noise source identification

f=0

L
_ 2
ri1—M.,.| ot
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Loading noise at the max
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Resurts: Side_by_Side ROtOr UNIVERSITY OF CALIFORNIA

——

« Comparison against similar-sized conventional gt
helicopter noise R
e I S R PO S NS PR EEBell 430
_, | Mic: 500 ft below the vehicle 0% Overiap |
Il 25% Overlap

(o))
O

A
o
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S
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20 -
A-weighted
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Results: Side-by-Side Rotor "o

« Comparison against the background noise data
measured by Begault (NASA Ames) in the Bay Area, CA

* 0% overlap case:

90 ‘ ‘
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Summary Of ReSUItS: Side-by- UNIVERSITY OF CALIFORNIA
Side Rotor

* BVI events, particularly the rotor-to-rotor BVI events,
are the most dominant noise sources.

* Rotor noise increases with increasing rotor overlap.

* The side-by-side rotor with 25% overlap is only 5 dB
quieter than the conventional helicopter. The noise
guideline of 15 dB quieter than similar-sized helicopter
noise could not be met.

* The side-by-side rotor noise with 0% overlap has
partially exceeded the freeway noise level even at an
altitude of 1,500 ft. Noise reduction technology should

be pursued.
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Thank You
Questions?

E—— E—— ]
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